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Abstract. Using field-theoretic renormalization group methods we calculate the equation of state
for non-equilibrium systems belonging to the universality class of directed percolation to second
order inε = 4− d. By introducing a parametric representation the result can be written to this
order in a very simple form. We use our result to obtain a universal amplitude ratio to second order
in ε.

1. Introduction

Numerous physical systems that show continuous nonequilibrium phase transitions display,
near the transition point, space-time structures that can be described by directed percolation
clusters. Well known examples are epidemic processes without immunization [1], poisoning
of catalytic surfaces [2], roughening transitions in growth processes [3], Schlögl’s reaction
models [4,5], contact processes [6,7] and certain cellular automata [8,9]. The model known in
particle physics as reggeon field theory [10–12] has also been related to directed percolation and
epidemic processes [13–16]. All these systems share the property that their critical behaviour is
characterized by the existence of an absorbing state. This property determines their universality
class [5,17].

The behaviour of these systems near the transition point is characterized by universal
quantities such as critical exponents. The exponents for directed percolation have been
calculated to second order inε = 4− d [5] and numerically ford = 1 andd = 2 (for recent
results see, e.g. [18–20]). It is well known from the theory of equilibrium critical phenomena
that universality not only holds for critical exponents but also for certain amplitude ratios and
scaling functions [21–23]. An example for a universal relationship between physical quantities
near a critical point is the equation of state. In this paper we derive an equation that describes
the stationary state of epidemic processes with an absorbing state near the transition point.

Before we turn to the mesoscopic description used in the analysis presented below let us
briefly discuss two examples for microscopic models that belong to the universality class of
directed percolation. Schlögl’s autocatalytic reaction scheme [4] is defined by the reaction
equations

X +A

k1

−→
←−
k′1

2X X

k2

−→
←−
k3

B (1)

where the concentration ofAs andBs is kept constant (e.g. by reservoirs). Here two remarks
are in order: (i) ifA = B (i.e. the particles are of the same type) and their concentration is
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not kept constant (but governed by the reaction–diffusion dynamics) the system belongs to
a different universality class. In that case the total particle density is conserved and affects
the long-time dynamics of the system [24, 25]. (ii) Only if the reactionB → X has zero
probability the system has an absorbing state. In the case of chemical systems it is natural
to take this process into account since back reactions cannot in general be avoided. Thus the
B-particles represent a source forX. Below a critical value of the reaction ratek2 the density
of X-particles is nonvanishing in the stationary state fork3→ 0.

In the theory of infectious diseases [1] one considers two types of individuals: susceptibles
S who can catch the disease and infectivesI who have the disease and can transmit it. The
dynamics of the system is characterized by the following processes.

(i) Healthy (susceptible) individuals may catch the disease by contact with infectives. Infected
individuals may recover spontaneously and thereby become susceptible again.

(ii) Interaction of infected individuals can lead to recovery (‘saturation’).
(iii) Diffusive spreading of the disease.
(iv) Susceptibles may catch the disease spontaneously.

The process (iv) models, for instance, a continuous flow of germs into the system. Note that
the system has an absorbing state if (and only if) the process (iv) has zero probability.

A mesoscopic description for the dynamics near the transition point requires a single
densityn(r, t)which represents the slow degrees of freedom. In the case of Schlögl’s model (1)
n corresponds to the density ofX-particles, in the context of poisoning of a catalytic surfacen

is the density of vacant sites and in epidemic processes it represents the density of infectives.
The density satisfies the Langevin equation

∂tn = λ∇2n +R[n]n + λq + ζ (2)

where the reaction rateR[n] can be expanded in powers ofn. In order to investigate the
universal properties near the transition point we only need the two leading terms,

R[n] = λ
(
τ +

g

2
n
)

(3)

whereg > 0 andτ is a temperature-like critical parameter. Forq = 0 the system has an
absorbing state withn = 0 if the random forceζ is multiplicative:

〈ζ(r, t)ζ(r′, t ′)〉 = λg̃n(r, t)δ(r − r′)δ(t − t ′) (4)

where we have again neglected irrelevant higher powers inn. In the case of the reaction–
diffusion system (1) the (constant) source termq vanishes for a zero reaction ratek3. By a
simple rescaling it is possible to render the coupling constantsg andg̃ equal.

2. Renormalized field theory and perturbational calculation of the equation of state

Hereafter we work with the dynamic functional [5,29–32]

J [s̃, s] =
∫

dt
∫

ddrs̃

[
∂t s + λ(τ −∇2)s +

λg

2
s(s − s̃)− λq

]
(5)

wheres ∝ nands̃ denotes a Martin–Siggia–Rose response field [33]. Response and correlation
functions can be computed by integrating products of the fieldss̃ and s with the weight
exp(−J ). We are especially interested in the averageM = 〈s〉 which corresponds to the
mean particle density. The external fieldλq describes the spontaneous creation of particles
and breaks the symmetrys̃(t)↔ −s(−t).
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In order to obtain the equation of state—i.e.M as a function ofτ andq in the stationary
state—we perform the shifts = M + φ and determineM by the no-tadpole requirement
〈φ〉 = 0. Since the stationary state is homogeneous the shift leads to the functional

Jφ [φ̃, φ] = J0[φ̃, φ] + JG[φ̃, φ] + JI [φ̃, φ] (6)

whereφ̃ = s̃,

J0[φ̃, φ] =
∫

dt
∫

ddr λφ̃
[
M
(
τ +

g

2
M
)
− q

]
(7)

JG[φ̃, φ] =
∫

dt
∫

ddr φ̃

[
∂tφ + λ(τ + gM −∇2)φ − λg

2
Mφ̃

]
(8)

and

JI =
∫

dt
∫

ddr
λg

2
φ̃φ(φ − φ̃). (9)

The equation of state can now be written in the form

λq = λM
(
τ +

g

2
M
)
− (10)

where the bubble represents the sum of all one-particle irreducible Feynman diagrams of the
field theory (6)–(9) with one external̃φ-leg. Details of the diagrammatic analysis are given
in the appendix. After dimensional regularization of ultraviolet divergences one obtains at
two-loop order

q = M
[
τ +

g

2
M − Gεg

2τ̄ 1−ε/2

ε(2− ε) −
g4τ̄−ε

24

(
gM

1− ε
2

I1 + (2I1 + 3I2)τ̄

)]
(11)

whereGε = 0(1 + ε/2)/(4π)d/2 is a geometrical factor and

τ̄ = τ + gM. (12)

The integralsI1 andI2 are defined in the appendix.
The poles inε can be absorbed into renormalizations of the fields and the coupling

constants. The renormalizations read

φ̃→ ˚̃
φ = Z1/2φ̃ φ→ φ̊ = Z1/2φ M → M̊ = Z1/2M

q → q̊ = Z−1
λ Z

1/2q λ→ λ̊ = Z−1Zλλ τ → τ̊ = Z−1
λ Zτ τ

g→ g̊ = Z−1/2Z−1
λ Zgg Gεg

2 = uµε
(13)

whereµ denotes an external momentum scale. The required renormalization factors have been
determined to two-loop order in [5]. TheZ-factors are

Z = 1 +
u

4ε
+

(
7

ε
− 3 +

9

2
ln

4

3

)
u2

32ε

Zλ = 1 +
u

8ε
+

(
13

ε
− 31

4
+

35

2
ln

4

3

)
u2

128ε

Zτ = 1 +
u

2ε
+

(
1

2ε2
− 5

32ε

)
u2 Zg = 1 +

u

ε
+

(
5

4ε2
− 7

16ε

)
u2.

(14)
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3. Scaling form of the equation of state

In order to improve the perturbative result (11) by the renormalization group we exploit, as
usual, the invariance of the bare-field theory with respect the a variation ofµ at fixed bare
parameters, i.e.,

µ
d

dµ

∣∣∣∣
0

q̊(τ̊ , M̊, g̊) = 0. (15)

This equation—expressed by renormalized quantities—is the renormalization group equation

[µ∂µ + κτ∂τ − 1
2γM∂M + β∂u + ζ − 1

2γ ]q(τ,M, u;µ) = 0 (16)

with the Wilson functions (to two-loop order)

γ (u) = d lnZ

d lnµ

∣∣∣∣
0

= −u
4

+

(
3− 9

2
ln

4

3

)
u2

16

κ(u) = d lnτ

d lnµ

∣∣∣∣
0

= 3u

8
−
(

49

4
+

35

2
ln

4

3

)
u2

64

ζ(u) = d lnλ

d lnµ

∣∣∣∣
0

= −u
8

+

(
17

2
− ln

4

3

)
u2

128

β(u) = du

d lnµ

∣∣∣∣
0

= u
[
−ε +

3u

2
−
(

169 + 106 ln
4

3

)
u2

128

]
.

(17)

The renormalization group equation (16) can be solved by characteristics. At the fixed point
(u? with β(u?) = 0)

u? = 2ε

3

[
1 +

(
169

192
+

53

96
ln

4

3

)
2ε

3
+ O(ε2)

]
(18)

the result (combined with dimensional analysis) reads

q(τ,M, u;µ) = µ2+d/2lz+(d−η)/2q(µ−2l−1/ντ, µ−d/2l−(d+η)/2M,u?; 1) (19)

with the critical exponents [5]

η = γ (u?) = −ε
6

[
1 +

(
25

288
+

161

144
ln

4

3

)
ε + O(ε2)

]
ν = 1

2− κ(u?) =
1

2
+
ε

16

[
1 +

(
107

288
− 17

144
ln

4

3

)
ε + O(ε2)

]
z = 2 + ζ(u?) = 2− ε

12

[
1 +

(
67

288
+

59

144
ln

4

3

)
ε + O(ε2)

]
β = ν(d + η)

2
= 1− ε

6

[
1−

(
11

288
− 53

144
ln

4

3

)
ε + O(ε2)

]
δ = 1 +

ν(z− η)
β

= 2 +
ε

3

[
1 +

(
85

288
+

53

144
ln

4

3

)
ε + O(ε2)

]
(20)

and the scaling function

q(τ,M, u?, µ) = M
[
τ +

g

2
M − ε

6
τ̄
(
A− B ln(τ̄ /µ2)− ε

12
(ln(τ̄ /µ2))2

)
+
ε2

72
gM

(
1 + I − 2 ln(τ̄ /µ2) + (ln(τ̄ /µ2))2

)]
(21)

where

A = 1 + ε

(
13

288
+

53

144
ln

4

3
− 1

4
ln 3− I

3

)
(22)

B = 1 + ε

(
37

288
+

53

144
ln

4

3

)
. (23)
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An integral representation forI = −2.343 9072. . . is given in the appendix. In order to
simplify the writing we will use, hereafter, the dimensionless quantities defined by

µ−2τ → τ µ−2gM → M µ−4gq → q. (24)

While equation (21) cannot be used directly to investigate the equation of state in the
critical region (τ , M → 0) one may map the critical region by an appropriate choice of the
flow parameterl in (19) on scales on which perturbation theory can be applied. Forl = Mν/β

equations (21) and (19) yield the scaling form

aq = MδF(bτM−1/β) (25)

with the scaling variablesx = bτM−1/β andz = aqM−δ and the universal scaling function

F(x) = x + 1 +
ε

6
K [(x + 2) ln(x + 2)− 2(x + 1) ln 2]

+
ε2

72

[
(x + 4)(ln(x + 2))2 − 4(x + 1)(ln 2)2

]
+ O(ε3) (26)

where

K = 1 + ε( 85
288 + 29

72 ln 2− 53
144 ln 3) = 1 + ε0.169 9728. . . . (27)

The coefficientsa andb in equation (25) are

a = 2

[
1 +

ε

3
+
ε2

18

(
85

48
+

53

12
ln 2− 89

24
ln 3− 5

2
I

)
+ O(ε3)

]
(28)

b = 2

[
1 +

1 + ln 2

6
ε +

ε2

36

(
13

48
− 89

24
ln 3− 3I +

(
99

16
+

59

12
ln 2− 53

24
ln 3

)
ln 2

)
+ O(ε3)

]
.

(29)

They have been introduced in order to normalize the scaling function, i.e.

F(0) = 1 F(−1) = 0. (30)

The equation of state (25) satisfies the correct scaling behaviour in the critical region but
the scaling function (26) can only be used ifx is not too large. Sinceq is an analytic function
of M for positiveτ (for equilibrium systems this was first discussed by Griffiths [34]) the
approximation (26) breaks down forM � τβ . In order to study this limit one may choose the
flow parameter in (19) asl = τ ν . One arrives at

aq = (bτ)βδF̄ (M(bτ)−β) (31)

with the scaling variablesy = M(bτ)−β = x−β and z̄ = aq(bτ)−βδ = zyδ and the scaling
function

F̄ (y) = y
{

1 +y +
ε

6
K[(1 + 2y) ln(1 + 2y)− 2(1 +y) ln 2]

+
ε2

72
[(1 + 4y)(ln(1 + 2y))2 − 4(1 +y)(ln 2)2] + O(ε3)

}
(32)

which is fully analytic iny:

F̄ (y) = y
∞∑
k=0

cky
k. (33)

Of coursey−δF̄ (y) andF(x) match in theε-expansion up to second order.
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Figure 1. Sketch of the parametric representation (34). The straight lines correspond to a variation
of θ at fixedR.

4. Parametric form of the equation of state

The full range of the variablesτ ,M (including the active phase forτ < 0) can be investigated
by introducing a parametric representation for the equation of state. For equilibrium systems
such a representation was first suggested by Schofieldet al [26] and Josephson [27] and later
derived in anε-expansion by Bŕezinet al [28]. To apply this method to directed percolation
we writeτ andM as

bτ = R(1− θ) M = Rβθ/θ0. (34)

Inserting (34) withθ0 = 2 into (25) one finds

aq = (Rβ/2)δH(θ) (35)

with the simple scaling function

H(θ) = θ(2− θ) + O(ε3). (36)

The parameter rangeR > 0, 06 θ < 2 is required to describe the whole phase diagram
around the critical point. The caseτ < 0, q → +0 corresponds to the limitθ → 2 (from
below). (See figure 1.)

As a simple application of the parametric representation we briefly discuss the
susceptibility

χ = ∂M

∂q

∣∣∣∣
τ

(37)

which satisfies a power law forq → 0,

χ = χ±|τ |−γ (38)

whereχ+ andχ− correspond to the casesτ > 0 andτ < 0, respectively, andγ = β(δ − 1).
To second order inε the susceptibility can be written in terms of the parameters (34) as

χ = a2δ−1R−γ
1− (1− β)θ

βδθ(2− θ) + 2(1− θ)2 . (39)

Therefore the universal amplitude ratioχ−/χ+ can be expressed to this order by the exponent
β as

χ−
χ+
= 2β − 1 + O(ε3) = 1− ε

3

[
1−

(
11

288
− 53

144
ln

4

3

)
ε + O(ε2)

]
(40)

= 1− ε
3
(1 + ε0.067 6885. . .). (41)
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The parametric equation of state allows us also to express the expansion coefficientc0

in (33) to second order inε by δ. For this purpose we write

x = 21/βθ−1/β(1− θ) y = θ/2

(1− θ)β z = θ−δH(θ) z̄ = 2−δH(θ)
(1− θ)βδ (42)

which gives to O(ε2)

F̄ (y)

y
= z̄

y
= 21−δ(2− θ)
(1− θ)β(δ−1)

. (43)

Fory ∼ θ → 0 this becomes

c0 = 22−δ + O(ε3) = 1− ε
3

ln 2− ε2

864
(85 + 164 ln 2− 106 ln 3) ln 2 + O(ε3)

= 1− ε0.231 049− ε20.065 9639 + O(ε3). (44)

5. Conclusion

We have derived a universal equation that describes the order parameter of directed percolation
systems as a function of the scaling fields near the transition point to second order inε = 4−d.
Using a parametric representation for the thermodynamic variables our result could be written
in a very simple form. This analysis was motivated by the success of a parametric equation of
state (analogous to (34)–(36)) for equilibrium critical phenomena which was shown to be in
good agreement with experiments [26]. Our hope is that our results will help to analyse data
obtained by Monte Carlo simulations. It would be especially interesting to see how important
the O(ε3) corrections to equation (36) are in practice.
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Appendix

We give some details of the diagrammatic analysis required to compute the equation of state.
The diagrams contributing to two-loop order are given in figure A1. The Gaussian propagator
follows from the actionJG in equation (8) as

t

q

t ′ = 2(t − t ′) exp(−λ(τ̄ + q2)(t − t ′)) (A1)

where2(t) denotes the step function andq is the momentum carried by the line. The correlator
reads

t
q

t ′ = gM

2(τ̄ + q2)
exp(−λ(τ̄ + q2)|t − t ′|) (A2)

and the vertices

= − = λg (A3)

represent the interaction (9).
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+

(d)(a) (b) (c)

Figure A1. Contributions to the equation of state to two-loop order.

After integration over the internal time arguments the Feynman diagrams are

(a) = −λg
2M

4

∫
p

1

τ̄ + p2
= Gε

ε(2− ε)λg
2Mτ̄ 1−ε/2 (A4)

(b) = λg4M

12

∫
k,p

1

(τ̄ + k2)(τ̄ + p2)(τ̄ + (k + p)2)
= λg4M

12
τ̄ 1−εI1 (A5)

(c) = λg4M

8

∫
k,p

1

(τ̄ + k2)2(3τ̄ + k2 + p2 + (k + p)2)
= λg4M

8
τ̄ 1−εI2 (A6)

(d) = −λg
5M2

16

∫
k,p

1

(τ̄ + k2)2(τ̄ + p2)(τ̄ + (k + p)2)

= λg5M2

16

1

3

∂

∂τ̄

∫
k,p

1

(τ̄ + k2)(τ̄ + p2)(τ̄ + (k + p)2)

= λg5M2

16

1− ε
3

τ̄−εI1 (A7)

where we have used the notation
∫
k
. . . = (2π)−d ∫ ddk . . . .

Theε-expansions of the integralsI1 andI2 read

I1 =
∫
k,p

1

(1 + k2)(1 +p2)(1 + (k + p)2)
= −6G2

ε

ε2

[
1 +

3ε

2
+
ε2

4
(7 + I ) + O(ε3)

]
(A8)

with

I =
∫ 1

0
dx

ln(x(1− x))
1− x(1− x) = −2.343 9072. . . . (A9)

and

I2 =
∫
k,p

1

(1 + k2)2(3 + k2 + p2 + (k + p)2)
= 3G2

ε

2ε

[
1 +

ε

2
(3− ln 3) + O(ε2)

]
. (A10)

The finite parts of the integrals are required to calculate the coefficientK in the scaling
function (26) and the normalization constantsa andb (28), (29).
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